Основы технологии клонирования. Что такое клонирование растений и зачем это нужно? Естественное и искусственное клонирование

Клонирование - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных.

Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

С развитием науки в обиход вошли такие понятия, как генная инженерия, клонирование. Сначала это было захватывающие путешествие, где человек мог фантазировать, придумывать возможности, которые откроет это направление науки. Это и исцеление всех болезней, и изменение растительного и животного мира. В последние годы, когда успехи в этой области стали налицо, появились первые результаты, люди неожиданно задумались о том, что не все так просто и красиво в этом явлении. Задумались и… испугались. Отсюда и множество поверий и мифов, освещающих это явление. Точная информация о последних достижениях тщательно засекречена, поэтому ползущие слухи питают людей. Распространены как мифы о клонированных и генетически модифицированных животных, так и вымыслы об искусственно измененных растениях.

Что же, попробуем с помощью уже имеющихся данных разобраться в том, что является правдой, а что - вымыслом. Конечно же, большинство данных утверждений справедливо для цивилизованного мира и стран. Действия в подпольных лабораториях стран третьего мира не поддаются контролю и объяснениям, однако они и ограничены по возможностям, ведь с мощью государственных программ им тяжело сравниться.

Технологии генной инженерии могут помочь только людям. На самом деле огромные деньги вкладываются в применение этих технологий для животных. В США выдано более 100 лицензий на применение продукции генной инженерии для животных. В основном это - биопрепараты, вакцины, а также средства диагностики. В эту область постоянно вкладываются деньги, ежегодно на исследования тратится более 400 миллионов долларов. Вообще во всем мире каждый год на лечение животных и поддержание их здоровья тратится около 18 миллиардов долларов, из них почти 3 миллиарда - это продукция, произведенная с помощью биотехнологий.

Клонирование и генная инженерия - дело далекого будущего. Казалось бы, первые образцы были получены совсем недавно - первое животное-клон, овечка Долли в 1997 году, а первые живые существа, в которых был внедрен посторонний ген в 2004 году. Ими стали декоративные рыбки Глоуфиш, которые вобрали в себя ген морского анемона и получили возможность флюоресцировать красным светом. Технологии и возможности так стремительно развиваются, что организации, занимающиеся этим бизнесом, вовсю стали получать коммерческие заказы. В конце 2004 года хозяйке был возвращен клон недавно умершего любимого кота. И если стоимость такого нового любимца достигла 50 тысячи долларов, то покупка таких необычных рыбок вполне доступна любому. Крупные компании, занимающие биотехнологиями, успешно клонировали уже сотни голов крупного рогатого скота, однако пока на рынке нет ни их мяса, ни молока. А вообще в лабораториях уже успешно клонированы и крысы, и лошади, и кролики, и свиньи.

Домашним животным биотехнологии не нужны. Собаки и кошки получают произведенные с помощью биотехнологий вакцины, которые намного эффективнее обычных. С помощью генной терапии восстанавливается зрение у больных животных, а также излечиваются различные злокачественные опухоли и рак костей. Предлагается даже изучать (секвенировать) ДНК особо чистокровных животных для выявления полезных генов. Для одомашненных животных ученые постоянно разрабатывают все новые технологии, которые направлены на улучшение здоровья животных, увеличение их производительности. С помощью генетически модифицированного корма, который легкоусвояем и более питателен, добивается снижение затрат на содержание животных. Когда-то и искусственное осеменение казалось недопустимым, новые же технологии вскоре станут привычными, помогут улучшить породу животных, снизить риски наследственных заболеваний, укрепить общее здоровье скота.

Генная инженерия явилась причиной последних страшных эпидемий, таких как птичий грипп, коровье бешенство и другие. Эти заболевания никак не связаны с этой наукой. Наоборот, биотехнологи всего мира борются против страшных эпидемий, разрабатывая все новые вакцины. Например, в Южной Корее выведена порода коров, в организме которой не образуется белок, являющийся причиной коровьего бешенства. С помощью генных технологий ученые пытаются контролировать деятельность москитов, которые переносят малярию и другие заболевания.

Пересадка органов животных к человеку - всего лишь вымысел. Дело в том, что такая идея носится в воздухе достаточно давно. Первые серьезные эксперименты проводились еще в 80-х годах, в одной американской клинике пациенту попытались пересадить сердце обезьяны-бабуина. Однако орган проработал всего 20 минут. Наиболее близким по генному набору к человеку является свинья, поэтому ее органы успешно используются врачами для лечения людей. Сердечные клапаны этих животных пересаживают человеку, а кожу пересаживают на место обожженной. В нескольких странах пытаются создать генетически модифицированных свиней, чьи органы вообще не будут отторгаться человеческим организмом.

Известный клон - овечка Долли много болела и умерла преждевременно. Действительно, овца-знаменитость прожила чуть меньше, чем в среднем живут ее соплеменники. Причиной ее смерти стало заболевание легких, которое обычно возникает у пожилых особей. Однако нет причин считать ее смерть преждевременным старением, так как у особей, постоянно находящихся в замкнутом помещении риск такого заболевания возрастает. Долли же, в целях безопасности, практически не паслась на свежем воздухе. Отклонения в структуре хромосом были обнаружены лишь на одном из первых исследовании и в дальнейшем не подтвердились. Так что можно считать, что смерть Долли наступила от вполне естественных причин.

Животные лишь инструмент для тестирования новых биотехнологий. На самом деле технологии призваны улучшать здоровье домашних питомцев. Разрабатываются и активно вводятся в ветеринарию новые вакцины, к примеру, от бешенства. Стало гораздо легче выявлять многие заболевания на ранних стадиях, такие как кошачий СПИД. Для сельскохозяйственных животных новые разработки помогут увеличить поголовье, снизить риски генетических заболеваний. Ученые уже вывели породу коров, которые не заболевают маститом. Для диких видов проводятся работы по искусственному оплодотворению и выращиванию в пробирке эмбрионов, что позволит сохранить редкие и исчезающие виды.

Клоны все-таки отличаются от обычных животных. Ученых также заинтересовал этот вопрос, и были проведены специальные исследования, которые анализировали все аспекты деятельности животных - поведение, питание, физиологические процессы. Результаты показали, что никакой разницы по сравнению с обычными животными нет.

Клонирование никоим образом не касается диких животных. Ученые с успехом используют клонирование для сохранения исчезающих видов животных. В последние годы успешно клонированы исчезающие европейские муфлоны, быки гауры и бантенги. Клонированный образец последнего даже живет в зоопарке Сан-Диего. Многие зоопарки, не в силах пока воссоздать живые образцы животных, поэтому они создают криобанки, в которых хранятся образцы яйцеклеток и тканей исчезающих видов животных и птиц.

Продукты питания, полученные от генномодифицированных или клонированных животных - вредны. Животные, взращенные с помощью биотехнологий, отличаются от обычных животных только в лучшую сторону - и это факт. Дело в том, что люди тысячелетиями занимались выведением новых, улучшенных пород неосознанно и сравнительно недавно стали использовать генетику. При этом ученые контролируют процесс и следят за результатами куда тщательнее, чем обычный фермер, хотя бы по причине стоимости выведения одного животного. После рождения за его развитием начинают тщательно наблюдать диетологи и ветеринары. Сельскохозяйственные институты контроля тщательно наблюдают за учреждениями, которые занимаются выведением "искусственных" животных. Проведенные разными учеными в разных странах исследования развенчали миф о вреде мяса и молока клонированных животных, никакой разницы по сравнению с продуктами обычных животных обнаружено не было.

Показатели смертности при рождении у клонированных животных гораздо выше, чем у обычных. Это утверждение действительно верно, многие искусственные эмбрионы являются нежизнеспособными, а смертность при родах действительно высока. Но и при обычном выведении животных для разведения оставляют немногих, которые соответствуют заданным параметра селекционеров, остальные же, являясь, как ни грустно, побочным продуктом, умерщвляются.

Обычные животные меньше болеют, чем клоны. Это миф, так как исследования многих серьезных институтов (например, Национальная академия наук США) на протяжении почти десяти лет показали, что у клонированных животных никаких значимых отклонений от здоровья обычных особей нет.

Попадание генномодифицированных животных в естественные природные условия может быть опасно для окружающей среды. Эксперименты по генной модификации применяются исключительно к домашним и сельскохозяйственным животным. Поэтому вероятность их попаданию в дикую среду мала. Однако если вдруг необычная кошка или корова убегут от человека, то для дикой природы они не представляют никакой опасности. Для начала, следует отметить тот факт, что искусственные гибриды слабо приспособлены для жизни в естественной среде, шансов на выживание у их потомков будет крайне мало. Вызывают опасения рыбы, которые растут, чуть ли не в 10 раз быстрее своих обычных сородичей, однако и еды им надо гораздо больше, что в естественной среде, в битве за выживание осуществить им будет невозможно. Поэтому можно сказать, что природа сама защитит себя от незванных гостей.

Все исследования и эксперименты - череда издевательств над животными. Группы активистов требуют прекратить опыты над животными и задействовать компьютерные модели. На самом деле за животными-клонами и особями, используемых для экспериментов, следят особо тщательно, за ними ухаживают с особой заботой и они ни в чем не нуждаются, да и компьютерные модели не могут предоставить полной картины. Опять же, государственные органы тщательно проверяют исследовательские учреждения. Однако активисты проводят агрессивную политику, вплоть до избиения ученых и преследования их семей, что вынудило ФБР рассматривать их действия как террористические угрозы. В борьбе за права животных, которые ничуть не ущемляются, люди готовы идти на прямое нарушение прав своих сограждан! В США государство встает на защиту биомедицинских исследований, жестко карая тех, кто незаконными методами препятствует этому.

Клон является точной копией прародителя и может занять его место. Этот миф подразумевает создание клонов животных или людей, абсолютно того же возраста, внешности и характера. Многих пугает, что клон может посягнуть на место своего прародителя! Однако такие возможности существуют лишь в фантастических сюжетах.

С помощью людей-клонов можно будет выращивать нужных специалистов. Фантазия рисует многим выращивание армий сантехников или армий обученных военных. Опровергая этот миф можно заметить, что, во-первых, клонирование лишь воспроизводит набор генов, а профессиональные навыки являются приобретенными и по наследству никак не передаются, поэтому их невозможно "запрограммировать". Во-вторых, не забывайте, что клон не является чьим-то рабом - это самостоятельная личность с правами обычного человека. Кто может заставить его быть тем, кем он не хочет? Закон защитит права такого человека. Ну и самый главный довод - экономический. Стоимость клонирования человека все еще высока, поэтому, даже с учетом отработки и усовершенствования технологии, производство большого числа клонов с целью определенной их специализации попросту невыгодна.

В процессе клонирования из обычной клетки человека выделяется ядро, которое переносится в женскую яйцеклетку, в котором ядро заранее удалено. Далее такая клетка помещается в питательную среду, где она начинает делиться, со временем появляется зародыш, который в случае с человеком вынашивается в течение 9 месяцев. После рождения клон, как и обычный человек, пройдет все этапы жизни - рост и развитие. Полученная личность будет отличаться от прародителя практически всем - возрастом, характером, привычками и даже отпечатками пальцев, даже внешность будет немного отличаться, ведь даже однояйцовые близнецы отличаются друг от друга. Большое влияние на развитие клона будет оказывать обстановка, в которой тот будет расти, воспитываться.

БЕСПОЛОЕ РАЗМНОЖЕНИЕ


В природе существует два основных типа размножения - бесполое и половое. Каждый из этих типов делится на несколько подтипов. В данном случае нас интересует бесполое размножение. Оно происходит без образования гамет при участии одного организма. "При бесполом размножении образуются идентичные потомки, а единственным источником генетической изменчивости служат случайные мутации"(1). Такое потомство, происходящее от одной родительской особи, называют клоном. Члены одного клона могут быть разными только вследствие случайной мутации. Существует подтипов бесполого размножения.

Деление


Таким способом размножаются простейшие одноклеточные организмы: каждая особь делится на несколько (две и более) дочерних клеток, которые идентичны материнской клетке. Перед делением происходит репликация ДНК, а у эукариотической клетки - также деление ядра. В основном происходит бинарное деление, при котором из одной материнской образуются две одинаковые дочерние клетки. Так делятся бактерии, простейшие и некоторые водоросли. Существует также множественное деление - процесс, при котором "вслед за рядом повторных делений клеточного ядра происходит деление самой клетки на множество дочерних клеток" (2). Наблюдается у таких простейших, как споровики. Эти дочерние клетки являются спорами. Спора - одноклеточная единица, состоящая из небольшого количества цитоплазмы и ядра и имеющая микроскопические размеры.

Почкование


Почкование - форма бесполого размножения, когда дочерняя клетка образуется в виде выроста, очень напоминающего почку растения. Этот вырост появляется на родительской особи, а затем, отрываясь от него, ведёт самостоятельный образ жизни. При этом отпочковавшаяся особь идентична родительскому организму. Размножение почкованием встречается у разных групп организмов: у кишечнополостных (гидра) и у одноклеточных грибов (дрожжи).

Размножение фрагментами (фрагментация)


"Фрагментацией называют разделение особи на две или несколько частей, каждая из которых растёт и образует новую особь".(3) Фрагментацию можно наблюдать у некоторых низших животных, которые в силу своих слабо дифференцированных клеток сохраняют значительную способность к регенерации. Таких животных используют для экспериментального изучения процесса фрагментации. Часто при этом используют свободноживущую планарию. Эти эксперименты помогают понять процесс дифференцировки. В результате этого процесса каждая клетка приобретает определённую структуру, которая позволяет ей выполнять ряд специфических функций более эффективно. Это является одним из важнейших событий, которые происходят в процессе развития.

Клонирование


Итак, клонирование - "получение идентичных потомков при помощи бесполого размножения"(4). По-другому определение клонирования звучит так "Клонирование - это процесс изготовления генетически идентичных копий отдельной клетки или организма" (5). То есть эти организмы похожи не только внешне, но и генетический код, заложенный в них, одинаков.
Возможности клонирования открывают новые перспективы для садоводов-огородников, фермеров-животноводов, а также для его медицинского применения. "Одной из главных задач в данной области является создание коров, в молоке которых будет содержаться сыворотка человеческого алгаомина. Эта сыворотка используется для лечения ожогов и иных травм, и мировая потребность в ней составляет от 500 до 600 тон в год" (6)(рисунок). Это одно направление. Второе - создание органов животных, которые можно будет использовать для трансплантации человеку. "Во всех странах существует серьезный недостаток донорских органов - почек, сердец, поджелудочных желез, печени. Поэтому идея, что можно создать практически конвейерное производство трансгенетических свиней, по графику поставляющих такие органы для пациентов, специально подготовленных для приема этих органов, вместо того, чтобы отчаянно пытаться найти подходящую ткань у донора-человека - такая идея является волнующей перспективой" (7). Путём клонирования можно получать животных с высокой продуктивностью яиц, молока, шерсти или таких животных, которые выделяют нужные человеку ферменты (инсулин, интерферон, химозин). "Человеческие ферменты можно получать и более простым способом: взяв нужную клетку крови человека, клонировать её и вырастить клеточную культуру, которая в лабораторных условиях будет производить нужный фермент. Комбинируя методы генной инженерии с клонированием, можно вывести трансгенные сельскохозяйственные растения, которые смогут сами себя защищать от вредителей или будут устойчивы к определённым болезням."(8).

Структурно-функциональная организация генетического материала


Наследственность и изменчивость - фундаментальные свойства живого.
Жизнь как особое явление характеризуется продолжительностью существования во времени. Это обеспечивается преемственностью живых систем. В основе такого непрерывного существования во времени лежит способность биологических систем к самовоспроизведению. "Сохранение жизни в меняющихся условиях оказывается возможным благодаря эволюции живых форм, в процессе которой у них появляются изменения, обеспечивающие приспособление к новой среде обитания. Непрерывность существования и историческое развитие живой природы обусловлены двумя фундаментальными свойствами жизни: наследственностью и изменчивостью." (9) Рассмотрим эти свойства более подробно. Наследственность. Что под этим подразумевается? На клеточном и организменном уровнях под наследственностью понимают способность биологических систем сохранять и передавать в процессе самовоспроизведения строение, особые функции, развитие. На популяционно-видовом уровне организации жизни наследственность проявляется в поддержании постоянного соотношения генетических форм в ряду поколений данного вида. На биоценотическом уровне- в обеспечении сохранения определённого соотношения видов организмов, которые образуют биоценоз. В ходе возникновения и развития жизни на земле наследственность играла огромную, решающую роль, так как закрепляла полезные изменения, происходящие в организме, таким образом, обеспечивая как бы консерватизм организации живых систем. Поэтому можно сделать вывод, что наследственность является одним из главных факторов эволюции. "Изменчивостью называется вся совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду."(10) На уровне отдельных клеток и организмов изменчивость проявляется в возникновении отличий между ними, так как затрагивается их индивидуальное развитие (онтогенез). На популяционно-видовом уровне организации жизни это свойство проявляется в наличии генетических различий между отдельными представителями популяции вида. Благодаря этому появляются новые виды организмов, что вносит разнообразие, а так же изменения в межвидовые взаимоотношения в биоценозах. Изменчивость в определённом смысле отражает динамичность организации живых систем и тоже является решающим фактором эволюции.
"Несмотря на то что по своим результатам наследственность и изменчивость разнонаправлены, в живой природе эти два фундаментальных свойства образуют неразрывное единство, чем достигается одновременно сохранение в процессе эволюции имеющихся биологически целесообразных качеств и возникновение новых, делающих возможным существование жизни в разнообразных условиях."(11)

Цитоплазматическое наследование


В начале XX в. было обнаружено, что в клетках имеется внехромосомный наследственный материал. Он располагается в различных цитоплазматических структурах и определяет собой особую цитоплазматическую наследственность. Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов даёт основание для специального рассмотрения их участия в формировании фенотипа в процессе индивидуального развития. Цитоплазматические гены не подчиняются законам Менделя о наследовании, которые определяются поведением хромосом при процессах: митозе, мейозе и оплодотворении. Так как образующийся вследствие оплодотворения организм получает цитоплазматические структуры вместе с яйцеклеткой, то цитоплазматическое наследование идёт по материнской линии. Этот тип наследования был впервые описан К. Корренсом в 1908 г. в отношении признака пёстрых листьев у некоторых растений (рисунок). Позднее было установлено, что развитие этого признака обуславливается мутацией, которая возникает в ДНК хлоропластов и нарушает в них синтез хлорофилла. Размножение в клетках нормальных (зелёных) и мутантных (бесцветных) пластид, их последующее затем случайное распределение между дочерними клетками приводят к появлению отдельных клеток, совершенно лишённых нормальных пластид. Потомство таких клеток и образует обесцвеченные участки на листьях. Таким образом, фенотип потомства зависит от фенотипа материнской особи, то есть у растения с зелёными листьями потомство будет абсолютно нормальным, потомство растения с бесцветными листьями будет такой же фенотип. Для клонирования это важно, так как при этом процессе ядро яйцеклетки заменяется ядром соматической клетки из ткани животного, и цитоплазматические гены должны запустить программу роста и развития этой клетки. Здесь решаются проблемы связанные с хромосомами.

Положения хромосомной теории


Термин хромосома был предложен в 1888г. немецким морфологом В. Вальдейером. Он применил этот термин для обозначения внутриядерных структур эукариотической клетки, которые хорошо окрашиваются основными красителями (от греческого хрома - цвет и сома - тело).
Представление о хромосомах как носителях комплексов генов было составлено наблюдения сцеплённого наследования родительских признаков друг с другом при передаче их из поколение в поколение. Такое сцепление признаков объяснили размещением соответствующих генов в хромосоме, которая является достаточно устойчивой структурой, сохраняющей состав генов в ряду поколений клеток и организмов.
Согласно хромосомной теории наследственности, совокупность генов, входящих в состав одной хромосомы, образует группу сцепления. Каждая хромосома уникальна по набору заключённых в ней генов. Поэтому число групп сцепления в наследственном материале организмов, принадлежащих к одному виду, определяется количеством хромосом в гаплоидном наборе их половых клеток. При оплодотворении образуется диплоидный набор, каждая группа сцепления которого представлена двумя видами - отцовской и материнской хромосомами, несущими разные наборы соответствующего комплекса генов.
Представление о линейном расположении генов в хромосомах возникло на основе нередко наблюдаемого процесса рекомбинации (взаимообмена) между материнским и отцовским комплексами генов, заключённых в гомологичных хромосомах. Установили, что частота рекомбинации характеризуется определённым постоянством для каждой пары генов и различна для разных пар. Это наблюдение дало возможность предположить связь частоты рекомбинации с последовательностью расположения генов в хромосоме.
Таким образом, была доказана роль хромосом как основных носителей наследственного материала в эукариотической клетке.

Роль ДНК в наследственности


В начале ХХ века Саттон и Бовери высказали верную мысль о том, что именно хромосомы передают генетическую одного поколения другому и сформулировали так называемую хромосомную теорию наследственности. "Согласно этой теории, каждая пара факторов локализована в паре гомологичных хромосом, причём каждая хромосома несёт по одному фактору. А так как число признаков у любого организма во много раз больше числа его хромосом, видимых в микроскоп, каждая хромосома должна содержать множество факторов. ."(12) В ряде экспериментов Альфред Мирский показал, что у особей одного вида все соматические клетки содержат
равное количество ДНК, которое вдвое больше количества ДНК в гаметах. То же самое относится и к содержанию в хромосомах белка, так что эти данные мало способствовали выяснению природы генетического материала.
В 1928 г. английский микробиолог Фредерик Гриффит поставил опыт. Во времена, когда антибиотики ещё не были известны, он пытался приготовить вакцину против пневмококка - возбудителя одной из форм пневмонии. Были известны две формы этой бактерии, одна из них обладает студенистой капсулой и вирулентна (вызывает заболевание), а другая не имеет этой капсулы и не вирулентна. Способность вызывать пневмонию и была, видимо, связана с наличием этой капсулы. Опыты по введению разных форм этих бактерий дали результаты, представленные в таблице 1.

Таблица 1

Результаты эксперимента Гриффита


"При вскрытии погибших мышей в них были обнаружены живые инкапсулированные формы. На основании этих результатов Гриффит сделал вывод, что от убитых нагреванием инкапсулированных форм к живым бескапсульным формам передаётся какой-то фактор, заставляющий их вырабатывать капсулы и становиться вирулентными."(13) Но природа этого трансформирующего фактора оставалась неизвестной до 1944 г., когда удалось выделить и идентифицировать его. Эвери, Мак-Карти и Мак-Лео установили, что удаление полисахаридной капсулы и белковой фракции из клеточных экстрактов не влило на способность трансформировать бескапсульные формы, но добавление фермента дезоксирибонуклеазы (ДНКазы), гидролизирующей ДНК, препятствовало трансформации. Способность высокоочищенных экстрактов ДНК из инкапсулированных клеток вызывать трансформацию показала, что фактором Гриффта была ДНК.

Химический состав хромосом


Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс.
Как было доказано исследованиями, ДНК является носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию - своеобразную программу развития клетки и организма, записанную с помощью особого кода. Количество ДДНК в ядрах клеток организма данного постоянно и пропорционально их плоидности. В диплоидных соматических клетках организма её в два раза больше, чем в гаметах. Увеличение числа хромосомных наборов в полиплоидных клетках сопровождается пропорциональным увеличением количества ДНК в них.
Белки составляют значительную часть вещества хромосом. На них приходится около 65% массы этих структур. Белки в хромосомах делятся на две группы: гистоны и негистоновые белки.
Помимо ДНК и белков в составе хромосом обнаружены РНК, липиды, полисахариды, ионы металлов.
РНК содержится во всех живых клетках в виде одноцепочечных молекул. Она отличается от ДНК тем, что содержит рибозу (вместо дезоксирибозы ДНК), а в качестве одного из пиримидиновых оснований - урацил (вместо тимина). Анализ РНК, содержащихся в клетке, показал, что существует три типа РНК, которые участвуют в синтезе белковых молекул. Во-первых, это матричная, или информационная, РНК (иРНК или иРНК), которая выполняет роль посредника при синтезе белков. Во-вторых, транспортная РНК (тРНК), которая является связующим звеном между триплетным кодом, содержащимся в мРНК, и аминокислотной последовательностью полипептидной цепи. И, в-третьих, рибосомная РНК (рРНК), которая находится в цитоплазме, где связана с белковыми молекулами, образуя вместе с ними клеточные органеллы - рибосомы. Все три типа РНК синтезируются непосредственно на ДНК, которая служит основой для этого процесса. Количество РНК в каждой клетке находится в прямой зависимости от количества вырабатываемого этой клеткой белка.
Данные, полученные экспериментами на самых разных организмах, показали, что процесс синтеза белка состоит из двух процессов, представленных на рисунке.

Природа генов


В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал "элементами". Позже их называли "факторами" и, наконец, генами. Было выяснено, что гены находятся в хромосомах, с которыми они и передаются из поколения в поколение. Если рассматривать ген как единицу мутации, то ему можно дать такое определение: "Ген - это наименьший участок хромосомы, который может быть отделён от примыкающих к нему участков в результате кроссинговера" (14). "Кроссинговер - обмен генетическим материалом между гомологичными хромосомами" (15). Если же рассматривать процесс мутирования, то геном можно назвать "наименьший участок хромосомы, способный претерпеть мутацию"(16).

Способы клонирования


Как уже говорилось выше, получение идентичных потомков при помощи бесполого размножения называется клонированием. Этот метод возник в результате попыток доказать, что ядра зрелых клеток, которые закончили своё развитие, содержат всю информацию, необходимую для кодирования всех признаков организма, специализация каждой клетки обусловлена включением определённых генов или их выключением, а не утратой некоторых из них. Первый успех был достигнут профессором Корнельского университета Стюардом. Он доказал, что, выращивая отдельные клетки съедобной части моркови в среде, содержащей нужные питательные вещества и гормоны, можно индуцировать процессы клеточного деления, приводящие к образованию новых клеток моркови.
"Первым, кто доказал возможность искусственного получения близнецов, был немецкий эмбриолог Дриш. Разделив клетки двуклеточного зародыша морского ежа, он получил два генетически идентичных организма.
Первые успешные опыты по трансплантации ядер клеток тела в яйцеклетку осуществили в 1952 году Бриге и Кинг, проводившие опыты с амебами. А в 1979 году англичанин Виладсен разработал метод получения однояйцевых близнецов из эмбрионов овцы и коровы. Однако развития эмбрионов добиться не удалось" (17). А в 1976 году Дж. Гердон доказал возможность клонирования на лягушках. Однако лишь в 1983 году учёным удалось получить серийные клоны взрослых амфибий (рисунок).
Как же, вопреки строгой закономерности, можно заставить клетку развиваться только с материнским диплоидным набором хромосом? Теоретически решение этой проблемы возможно двумя способами: хирургическим и "терапевтическим".
Хронологически второй метод изобретён намного раньше. Сто лет назад зоолог Московского университета А. А. Тихомиров открыл, что яйца тутового шелкопряда под воздействием различных химических и физических реакций могут развиваться без оплодотворения. Такое развитие было названо партеногенезом. Но оно рано останавливалось: партеногенетические эмбрионы погибали ещё до вылупления личинок из яиц.
Б. Л. Астауров в 30-е годы в результате длительных исследований подобрал термическое воздействие, которое одновременно блокировало стадию мейоза, то есть превращение диплоидного ядра яйцеклетки в гаплоидный, и активировало неоплодотворённое яйцо к развитию. С ядром, оставшимся диплоидным, развитие заканчивалось вылуплением личинок, повторяющих генотип матери, включая пол.
Клонировать млекопитающих можно, как упоминалось, и другим способом - хирургическим. Он основан на замене гаплоидного ядра яйцеклетки на диплоидное ядро, взятое из клеток эмбрионов. Эти клетки ещё не дифференцированы, то есть не началась закладка органов, поэтому их ядра легко заменяют функцию диплоидного ядра только что оплодотворённой клети. Таким методом в США (1952) У. Р. Бриггс и Т. Дж. Кинг, в Англии Д. Б. Гордон (1960) получили генетические копии лягушки, а в 1997 году шотландец И. Уилмут получает хирургическим путём знаменитую овцу Долли (рисунок) - генетическую копию матери. Для этого из клеток её вымени было взято ядро для пересадки в яйцеклетку другой овцы. Успеху способствовало то, что взамен инъецирования нового ядра применялись воздействия, приводящие к слиянию лишённой ядра яйцеклетки с обычной неполовой клеткой. После этого яйцеклетка с заменённым ядром развивалась как оплодотворённая. Очень важно, что этот метод позволяет взять ядро клонируемой особи в зрелом возрасте, когда уже известны её важные для человека хозяйственные признаки. Но у Долли были не слишком удачные предшественники. Её создатель, Ян Уилмут, произвёл 277 ядерных трансплантаций: получил 277 эмбрионов, из которых только 29 прожили дольше шести дней, и один из которых развился в полноценного ягнёнка, названного Долли.
"Профессор Нейфах и его коллеги из Института биологии развития Российской недавно скопировали каспийского осетра. Технология тут примерно такова. В клетке осетра убивают ядро, на его место вводят два сперматозоида и тепловым ударом заставляют их слиться воедино. Процесс слияния был необходим затем, чтобы удвоить набор хромосом в спермии. Далее уже все определяется умением задействовать сложные внутренние связи и, в конце концов, "выходить" зародыш, создав ему благоприятные условия. Основной аргумент российских биологов - они пытаются спасти каспийского осетра как вид. По размерам искусственные осетры, правда, пока не дотягивают до нормы, но, как утверждают исследователи, это уже технические трудности" (18).
"А ученые из университета штата Висконсин опробовали новую методику клонирования млекопитающих, отличную от той, что применялась учеными из Рослингского института, вырастившими Долли. В качестве основного исходного материала новаторы использовали яйцеклетку коровы. Ее лишали так называемого генетического кода и имплантировали молекулы ДНК других клонируемых животных - свиньи, крысы, овцы или обезьяны. При этом источником наследственного материала служили клетки тканей взрослых особей, взятые, например, из свиного или крысиного уха. После искусственного оплодотворения из коровьей яйцеклетки, получившей новую генетическую информацию, развивался зародыш другого млекопитающего - копия генетического донора. Таким образом, ученым удалось благополучно вырастить в лабораторных условиях эмбрионы свиньи, крысы, овцы, обезьяны да и самой коровы.
Специалисты из Висконсинского университета уверены, что их исследования имеют важное значение для развития генной инженерии и изучения возможностей генетического донорства. Руководители этих работ Нил Ферст, одним из первых в США приступивший к опытам по клонированию коров, и Таня Доминко полагают, что использованная ими методика в будущем сможет помочь сохранению исчезающих и редких видов животных." (19).
Учтя опыт шотландцев, американцы несколько изменили метод клонирования, использовав ядра эмбриональных (зародышевых) фибробластов - клеток, дающих соединительную ткань, взятых из взрослого организма. Таким образом, они резко увеличили эффективность метода, а также облегчили задачу введения "чужого" гена, так как в культуре фибробластов это сделать значительно легче.
Сейчас перед людьми не стоит вопроса: "Клонировать или нет?" Конечно клонировать. Благодаря этому открываются новые возможности. Например, в сельском хозяйстве можно получить высоко продуктивных животных или животных с человеческими генами. А также клонирование органов и тканей - задача номер один в траспланталогии. Стоит другой вопрос: "Разрешить ли клонирование человека?" С одной стороны это возможность бездетных людей иметь своих собственных детей, а с другой - возможность получения новых Наполеонов и Гитлеров, а также получение клонов для последующего использования их в качестве доноров необходимых органов.
Вопрос клонирования человека остаётся открытым!!
1. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.108
2. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.108
3. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.109
4. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.113
5. интернет www. intellectualcapital.ru/iss2-6/icissue6.htm
6. интернет www.intellectualcapital.ru/iss2-6/icinterv6.htm
7. интернет www.intellectualcapital.ru/iss2-6/icinterv6.htm
8. журнал "Весь мир" №12 (02.1998), стр71
9. "Биология 1", стр.60
10. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.245
11. "Биология 1", стр.61
12. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.231
13. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.205
14. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.208
15. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.114
16. Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.208
17. интернет www.gssmp.sci-nnov.ru/medfarm/fom/150/klon/html
18. интернет www.adventure.df.ru/project/klon/klon_3.htm
19. интернет www.gssmp.sci-nnov.ru/medfarm/fom/150/klon/html
20. таблица 1 - Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.205
21. рисунок 5 - Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.215
22. рисунок 1 - журнал "Весь мир" №12 (02.1998), стр71
23. рисунок 2 - "Биология 1", стр.253
24. рисунок 3 - Н. Грин, У Стаут, Д. Тейлор "Биология 3", стр.115
25. рисунок 4 - журнал "Весь мир" №12 (02.1998), стр70

Список используемой литературы:


1. Н. Грин, У Стаут, Д. Тейлор "Биология 3", Москва "Мир" 1993
2. "Биология 1", Москва "Высшая школа" 1999
3. журнал "Весь мир" №12 (02.1998)
4. интернет www. intellectualcapital.ru/iss2-6/icissue6.htm
5. интернет www.intellectualcapital.ru/iss2-6/icinterv6.htm
6. интернет www.gssmp.sci-nnov.ru/medfarm/fom/150/klon/html
7. интернет www.adventure.df.ru/project/klon/klon_3.htm
8. журнал "Природа", 07.1998

Рисунки


: Момент микроинъекции гена в эмбрион экспериментального животного.
: Наследование пестролистости у ночной красавицы.
а) зелёные листья; б) пёстрые листья; в)белые листья; I,II,III - результат скрещивания различных материнских растений(а,б,в,) с разными отцовскими
Рисунок 3: Клон шпорцевых лягушек (Xenopus laevis), полученный путём трансплатации ядер.
От скрещивания между двумя мутантными лягушками-альбиносами был получен зародыш (донор); на стадии хвостовой почки его клетки были диссоциированы и выделенные ядра пересажены в неоплодотворённые яйца самки дикого типа (рецепиента), ядра которых были разрушены УФ-облучением.
Группа из 30 лягушек, полученных в результате 54 таких пересадок; все они - самки-альбиносы.
: Овца "Долли"
: Схема главных этапов в процессе белкового синтеза.

О. В. САБЛИНА,

кандидат биологических наук, СУНЦ НГУ

КЛОНИРОВАНИЕ ЖИВОТНЫХ

Пожалуй, ни одно из достижений биологической науки не вызывало такого накала страстей в обществе, как клонирование млекопитающих. Если некоторые люди, как биологи, так и не имеющие отношения к «Life Sciences» (наукам о жизни), с восторгом приняли появившуюся, хотя бы и теоретически, возможность клонирования человека и готовы завтра же клонироваться, то большинство неспециалистов отнеслись к такой возможности, мягко говоря, очень настороженно.

Бурные дебаты в средствах массовой информации привели к тому, что среди населения оказалось распространенным мнение о крайней опасности подобных исследований. Этому немало способствовали «клоны», «заселившие» художественную литературу и кино. Несколько лет назад одна из околонаучных группировок заявила о намерении клонировать Гитлера, для того чтобы его повесить за совершенные преступления. Это, в свою очередь, породило опасения, что диктаторы типа Гитлера могут увековечить свою власть, передав ее своим клонам. В большинстве подобных представлений клоны человека - «ненастоящие люди», тупые и злобные, а клонированные животные и растения угрожают погубить всю биосферу. Здесь следует особо отметить, что люди нередко путают клонирование и трансгенез, тогда как это абсолютно разные вещи. Действительно, при получении трансгенных многоклеточных животных применяют клонирование, однако в этом случае клонирование - не цель, а средство. Клонирование без транс-генеза - прием, широко используемый в самых разных по своим целям проектах.

Насколько обоснованы эти страхи и надежды? Представляется очень важным формирование спокойного взвешенного суждения относительно перспектив и возможных последствий этих исследований. Для этого нужно ответить на несколько основных вопросов, что мы и попытаемся сделать.

Итак, что же такое клонирование? Как клонируют животных? Почему ученые этим занимаются? Для чего можно использовать технику клонирования животных? Допустимо ли клонирование человека?

ЧТО ТАКОЕ КЛОН?

Греческое слово κλ w n означает побег, отросток. Сейчас клонами называются особи животных или растений, полученные путем бесполого размножения и имеющие полностью идентичные генотипы. Клоны очень широко распространены среди растений - все сорта вегетативно размножаемых культурных растений (картофель, плодовые и ягодные растения, гладиолусы, тюльпаны и т.д.) являются клонами. Разработанная в настоящее время техника микроклонального размножения позволяет получать за короткое время огромное количество генетически идентичных экземпляров даже таких растений, которые в естественных условиях вегетативно не размножаются.

У животных такой тип размножения распространен значительно меньше. Тем не менее известно более 10 ООО видов многоклеточных животных, размножающихся путем деления одного организма на два или даже несколько частей (аутофрагмен-тация), которые вырастают в полноценные организмы. Эти новые организмы также являются клонами. Естественные клоны, возникающие путем обособления части клеток организма и развития из них полноценной особи, характерны не только для таких примитивных животных, как губки или хрестоматийные гидры. Даже такие достаточно высоко организованные животные, как морские звезды и черви, могут размножаться делением. Но позвоночные или насекомые такой способности лишены. Тем не менее клоны, возникшие естественным путем, встречаются даже у млекопитающих.

Природными клонами являются так называемые монозиготные близнецы, которые происходят из одной оплодотворенной яйцеклетки. Это происходит, когда зародыш на самых ранних стадиях дробления разделяется на отдельные бластомеры и из каждого бластомера развивается самостоятельный организм. Например, у американского девятиполосного броненосца всегда рождается по четыре монозиготных близнеца. Разделение зародыша на стадии четырех бластомеров на самостоятельные зародыши - нормальное явление для этого млекопитающего.

Такие близнецы представляют собой как бы обособившиеся части одного организма и имеют один и тот же генотип, т. е. являются клонами.

Монозиготные (или идентичные) близнецы у человека также являются клонами. Наибольшее известное число родившихся монозиготных близнецов у человека равняется пяти. Вероятность рождения близнецов у человека невелика - среди белого населения Европы и Северной Америки она в среднем составляет около 1%. Реже всего близнецы рождаются в Японии. В африканском племени йоруба частота близнецов составляет 4,5% всех рождений, а в некоторых районах Бразилии - до 10%, однако только незначительная часть из них являются монозиготными. Существуют и семьи с генетической предрасположенностью к рождению близнецов, но тоже только дизиготных.

Одновременная овуляция обусловлена определенным сбоем в работе гормональной системы, который может иметь генетическую природу. Причина же, по которой происходят разделение зародыша и образование монозиготных близнецов у человека, неизвестна. Частота этого явления - около 0,3% во всех популяциях человека.

Очень редко случается, что по неизвестной причине зародыш разделяется не до конца. Тогда рождаются сросшиеся (вернее, недоразделившиеся), так называемые сиамские близнецы. Примерно четверть всех идентичных близнецов являются «зеркальными», например, один из близнецов левша, другой правша, у одного волосы на макушке закручены по часовой стрелке, у другого против, у одного сердце расположено слева, а печень справа, у другого - наоборот. Ученые считают, что «зеркальность» близнецов является следствием разделения эмбриона на достаточно поздней стадии развития.

Таким образом, клоны животных и человека - нормальное природное явление. Этот факт сразу позволяет ответить на некоторые вопросы в связи с клонированием человека: клоны - абсолютно нормальные, полноценные люди, отличающиеся от всех остальных людей только тем, что имеют генетического двойника. Они являются самостоятельными, автономными организмами, хотя и имеющими идентичные генотипы. Поэтому любые надежды достичь бессмертия путем клонирования абсолютно беспочвенны. По этой же причине клоны не могут нести никакой ответственности за поступки, совершенные их «генетическим оригиналом».


ЭКСПЕРИМЕНТАЛЬНОЕ КЛОНИРОВАНИЕ ЖИВОТНЫХ

Клонированием называют искусственное получение клонов животных (в случае клонирования растений чаще пользуются терминами «вегетативное размножение», «меристемная культура»). Поскольку высшие животные не могут размножаться вегетативно, то для получения клона можно в принципе воспользоваться тремя методами:


удвоить набор хромосом в неоплодот-воренной яйцеклетке, получив таким образом диплоидную яйцеклетку, и заставить ее развиваться без оплодотворения;
искусственно получить монозиготных близнецов, разделив начавший развиваться эмбрион;
удалить ядро из яйцеклетки, заменив его на диплоидное ядро соматической клетки, и тоже заставить развиваться такую «зиготу».


Все эти три возможности ученые использовали для клонирования животных.

Первый способ удается применить не для всех животных. Еще в 30-е гг. XX в. Б.Л. Астаурову удалось с помощью термического воздействия активировать неопло-дотворенное яйцо тутового шелкопряда к* развитию, блокировав при этом прохождение первого деления мейоза. Естественно, ядро при этом оставалось диплоидным. Развитие такой диплоидной яйцеклетки заканчивалось вылуплением личинок, точно повторяющих генотип матери. Естественно, при этом получались только самки. К сожалению, разводить самок экономически невыгодно, так как при большей затрате корма они дают коконы худшего качества. В.А. Струнников усовершенствовал этот метод, разработав способ получения клонов тутового шелкопряда, состоящих только из особей мужского пола. Для этого на ядро яйцеклетки воздействовали гамма-лучами и высокой температурой. Это делало ядра, не способными к оплодотворению. Ядро сперматозоида, проникшего в такое яйцо, удваивалось и приступало к делению. Это приводило к развитию самца, повторявшего генотип отца. Правда, полученные клоны для промышленного шелководства непригодны, но их используют в селекции для получения эффекта гетерозиса. Это позволяет резко ускорить и облегчить получение выдающегося по продуктивности потомства. Сейчас эти методы широко применяются в шелководстве в Китае и Узбекистане.

К сожалению, успех с тутовым шелкопрядом является исключением - у других животных получить клоны таким способом не удается. Исследователи пробовали удалить один из пронуклеусов из оплодотворенной яйцеклетки и удваивали число хромосом другого, обрабатывая их веществами, разрушающими микротрубочки веретена деления. Получались диплоидные клетки, гомозиготные по всем генам (содержащие либо два материнских, либо два отцовских генома). Такие зиготы начинали дробиться, однако развитие прекращалось на ранней стадии и получить таким способом клоны млекопитающих оказалось невозможно. Были сделаны попытки пересадить пронуклеусы из одной оплодотворенной яйцеклетки в другую. Оказалось, что полученные таким способом зародыши развивались нормально только в том случае, если один пронуклеус представлял собой ядро яйцеклетки, а другой - сперматозоида. Эти эксперименты показали, что для нормального развития эмбрионов млекопитающих необходимы два разных генома - материнский и отцовский. Дело в том, что при формировании половых клеток имеет место геномный импринтинг - метилирование участков ДНК, что приводит к выключению метилированных генов. Это выключение остается на всю жизнь. Поскольку в мужских и в женских половых клетках выключаются разные гены, то для нормального развития организма нужны оба генома - одна работающая копия гена должна быть.

Второй метод - разделение эмбриона на ранних стадиях дробления в эмбриологии используют очень давно, правда в основном на морских ежах и лягушках. Именно таким способом были получены данные о способности выделенных из зародыша бластоме-ров дать начало полноценному организму. Клоны-монозиготные близнецы млекопитающих были получены существенно позже, но искусственное разделение эмбрионов и последующая их имплантация «суррогатным матерям» уже применяются в селекции сельскохозяйственных животных для получения большого числа потомков от особо ценных родителей. В 1999 г. таким способом была клонирована обезьяна. Оплодотворение было проведено в пробирке. Зародыш на стадии восьми клеток был разделен на четыре части, и каждая двуклеточная часть была имплантирована в матку другой обезьяны. Три зародыша при этом развиваться не стали, а из четвертого родилась обезьянка, которую назвали Тетра (Четвертинка).

Самое знаменитое клонированное животное, овечка Долли, была клонирована с помощью третьего метода - переноса генетического материала соматической клетки в яйцеклетку, лишенную собственного ядра.
Метод пересадки ядер был разработан еще в 40-х гг. XX в. русским эмбриологом Г.В. Лопашовым, работавшим с яйцеклетками лягушки. Правда, взрослых лягушек он не получил. Позднее англичанину Дж. Гёрдону удалось заставить яйцеклетки лягушки с чужим ядром развиваться до получения взрослых особей. Это было выдающееся достижение - ведь он пересаживал в яйцеклетку ядра дифференцированных клеток взрослого организма. Он использовал клетки плавательной перепонки и клетки эпителия кишечника. Но и у него до взрослого состояния развивалось не более 2% таких яйцеклеток, причем выросшие из них лягушки отличались меньшими размерами и пониженной жизнеспособностью по сравнению с их нормальными сверстниками.

Пересадить ядро в яйцеклетку млекопитающего значительно труднее, так как она примерно в 1000 раз мельче, чем яйцеклетка лягушки. В 1970-х гг. в нашей стране в Институте цитологии и генетики в Новосибирске на мышах это пытался сделать замечательный ученый Л.И. Корочкин. К сожалению, его работы не получили продолжения из-за трудностей с финансированием. Зарубежные ученые продолжали исследования, однако операция трансплантации ядра оказалась слишком травматичной для мышиных яйцеклеток. Поэтому экспериментаторы пошли другим путем - стали просто проводить слияние яйцеклетки, лишенной собственного ядра, с целой неповрежденной соматической клеткой.

Группа исследователей из Рослинско-го института в Шотландии, возглавляемая Я. Вилмутом, клонировавшие Долли, использовали для слияния клеток электрический импульс. Они удаляли ядра из зрелых яйцеклеток, затем с помощью микропипетки вводили под оболочку яйцеклетки соматическую клетку, выделенную из молочной железы овцы. С помощью электрического удара клетки сливались и в них стимулировалось деление. Затем, после культивирования в течение 6 дней в искусственных условиях, начавший развиваться эмбрион на стадии морулы имплантировали в матку специально подготовленной овцы другой породы (хорошо отличавшейся фенотипически от донора генетического материала). Рождение овечки Долли стало громкой сенсацией, а у некоторых ученых возникли сомнения в том, что она действительно была клоном. Однако специальные проведенные исследования ДНК показали, что Долли - настоящий клон.

В дальнейшем техника клонирования млекопитающих была усовершенствована. Группе ученых из университета Гонолулу под руководством Риузо Янагимачи удалось с помощью изобретенной ими микропипетки осуществить перенесение ядра соматической клетки непосредственно в яйцеклетку. Это позволило им обойтись без электрического импульса, который был далеко небезопасен для живых клеток. Кроме того, они использовали менее дифференцированные клетки - это были клетки кумулуса (соматических клеток, окружающих яйцеклетку и сопровождающих ее во время движения по яйцеводу). К настоящему времени этим методом клонированы и другие млекопитающие - корова, свинья, мышь, кошка, собака, лошадь, мул, обезьяна.

ЗАЧЕМ КЛОНИРОВАТЬ ЖИВОТНЫХ?

Несмотря на огромные успехи, клонирование млекопитающих остается сложной и дорогостоящей процедурой. Почему же ученые не оставляют эти эксперименты? Прежде всего потому, что это... интересно. Причем не просто любопытно - получится или нет, уже ясно, что получится. Клонирование млекопитающих чрезвычайно важно для фундаментальной науки. Это уникальный инструмент, позволяющий исследовать один из самых сложных и интригующих вопросов биологии - как, какими путями информация, записанная последовательностью нуклеотидов в ДНК, реализуется во взрослом неповторимом организме, каким образом осуществляется точнейшее взаимодействие тысяч генов, каждый из которых «включается» и «выключается» именно в то время и в той клетке, где это необходимо. Известно, что некоторые гены, работающие на самых ранних этапах эмбриогенеза, в ходе дальнейшего развития и дифферен-цировки клеток необратимо выключаются.

Как это происходит? Можно ли заставить дифференцированную клетку претерпеть обратную дифференцировку? На последний вопрос без клонирования ответить вообще невозможно. Сам факт, что клонирование млекопитающих удается, вроде бы говорит о том, что обратная дифференцировка возможна. Однако не все так просто. Часто животные клонированы из недифференцированных - эмбриональных стволовых клеток или из клеток кумулуса. В других случаях, возможно, также были использованы стволовые клетки. В частности, овечка Долли была клонирована из клетки молочной железы беременной овцы, а при беременности под действием гормонов стволовые клетки молочной железы начинают размножаться, так что вероятность того, что экспериментаторы возьмут именно стволовую клетку, повышается. Предполагают, что именно так и было с Долли. Этим может объясняться и очень малая эффективность клонирования - ведь стволовых клеток в ткани немного.

Но, конечно, если бы у метода клонирования не было хорошо просматриваемых практических выходов, исследования не были бы столь интенсивными. Какая же практическая польза может быть от клонированных животных? В первую очередь, клонирование высокопродуктивных домашних животных может быть использовано для получения в короткий срок больших количеств элитных коров, ценных пушных зверей, спортивных лошадей и т.д. Некоторые ученые считают, что клонирование никогда не будет широко применяться в животноводстве из-за того, что эта процедура весьма дорогая. Кроме того, условием селекции всегда было генетическое разнообразие, клонирование же, тиражируя один генотип, сужает это разнообразие. Тем не менее поскольку половое размножение необходимо связано с рекомбинацией, разрушающей сочетания аллелей, клонирование может помочь сохранить уникальные генотипы. Клонирование путем разделения начавших дробиться эмбрионов уже сейчас используется в селекции крупного рогатого скота.

Особые надежды ученые возлагают на клонирование диких животных, которым грозит исчезновение. Уже в настоящее время создаются «Замороженные Зоопарки» - образцы клеток таких животных, хранящиеся в замороженном виде при температуре жидкого азота (-196°С). В Америке уже родились два детеныша дикого быка бантенга, клонированные из клеток животного, умершего в 1980 г. Его клетки были заморожены и более 20 лет хранились в жидком азоте. Клонированы также другой вид дикого быка гаур, европейский дикий баран, дикие африканские степные кошки.

Клонирование кошек - особо интересный и важный эксперимент, проведенный в Институте Природы в городе Одюбоне (США). Там были получены два клона-самки от одной кошки-донора и один клон-самец от кота по имени Джаз. Джаз, в свою очередь, был выращен из эмбриона, который в течение 20 лет хранился в замороженном состоянии в жидком азоте, а потом был выношен и рожден обычной домашней кошкой. В 2005 г. обе кошки-клоны общими усилиями родили восьмерых котят. Отцом всех восьмерых был кот-клон Джаз. Этот опыт показал, что клоны способны к нормальному размножению. Следует, однако, понимать, что с помощью клонирования вряд ли удастся «воскресить» исчезнувший вид. Тем не менее это может помочь сохранить генофонд, если использовать полученные клоны в скрещиваниях с животными, содержащимися в зоопарках. Такое использование клонов может помочь избежать негативных последствий близкородственного скрещивания, неизбежного при малой численности вида.

Здесь следует сказать и о надеждах клонировать уже исчезнувших животных - мамонта, тасманийского сумчатого волка, зебры квагги. Оптимисты предполагают, что можно использовать ДНК этих животных, сохранившуюся либо в вечной мерзлоте, либо в законсервированных тканях. Однако предпринятая попытка клонировать тасманийского сумчатого волка, последнийэкземпляр которого погиб в зоопарке в 1936 г., не удалась. Это и неудивительно, так как в распоряжении ученых не было живых клеток, а только образцы тканей, хранившиеся в спирте. Из них была выделена ДНК, но она оказалась слишком поврежденной, да и существующие в настоящее время методы не позволяют клонировать животных») не имея достаточного количества живых клеток. По этой же причине мала вероятность когда-либо клонировать мамонта. Во всяком случае, все предпринятые попытки культивировать клетки мамонта, пролежавшие тысячелетия в вечной мерзлоте, оказались безуспешными. Кроме того, следует иметь в виду, что если даже и удалось бы получить и вырастить один клон мамонта или квагги, это не было бы воскрешением вида. Из одного или даже из нескольких экземпляров получить вид нельзя. Считается, что для устойчивого существования и воспроизведения вида необходимо по крайней мере несколько сотен особей. Поэтому ископаемая ДНК или ДНК из хранящихся в спирте тканей достаточна для анализа или даже для трансгенеза, но недостаточна для клонирования. Хотя известны случаи выживания вида после катастрофического падения численности. Один из таких видов - гепард. Генетический анализ показывает, что в его истории был момент, когда его поголовье составляло 7-10 особей. Хотя гепарды и выжили, последствия близкородственного скрещивания остались - частое бесплодие, мертворождения и другие трудности с размножением. Другой такой вид - человек. В эволюционной истории человека было не менее двух эпизодов прохождения резкого падения численности вида, а для американских индейцев - даже больше (заселение Америки шло из Восточной Сибири по Берингийскому перешейку очень небольшими группами - 7-10 человек). Именно поэтому генетическое разнообразие человека невелико, следствием чего является разнообразие фенотипическое - многие гены находятся в гомозиготном состоянии.

Безусловно, незаменимым методом клонирование является для получения трансгенных животных. Хотя применяются и другие методы получения трансгенных животных, именно клонирование позволяет получать животных с заданными свойствами для практических нужд. В том же Рослинском институте в Эдинбурге, где родилась Долли, были получены и клонированные овечки Полли и Молли. Для их клонирования были использованы генетически измененные клетки, культивировавшиеся в искусственных условиях. Эти клетки, кроме обычных овечьих генов, несли человеческий ген IX фактора свертываемости крови.

Генетическая конструкция содержала промотор, экспрессирующийся в клетках молочной железы. Поэтому белок, кодируемый этим геном, выделялся с молоком. Полли была первым клонированным трансгенным млекопитающим. Ее рождение открыло новые перспективы в лечении некоторых заболеваний человека. Ведь многие болезни связаны с нехваткой определенного белка - фактора свертываемости или гормона. До сего времени такие лекарства можно было получать только из донорской крови. А ведь количество гормона в крови очень мало! Кроме того, использование препаратов крови чревато инфекционными заболеваниями - не только СПИДом, но и вирусными гепатитами, которые не менее опасны. А трансгенных животных можно тщательно отобрать и проверить, содержать их на чистейших альпийских пастбищах. Ученые подсчитали, что для того чтобы обеспечить лекарственным белком всех (!) больных гемофилией на Земле, потребуется не слишком большое стадо трансгенных животных - 35-40 коров. При этом провести трансгенез и клонирование нужно-то всего только двух животных - самки и самца, а они, размножаясь естественным путем, передадут нужный ген потомству. При этом, поскольку у самцов ген в молочной железе не работает вообще, а у самок работает только во время лактации и продукт сразу же выводится с молоком из организма, никаких неудобств или нежелательных последствий для животных этот чужой ген не представляет. Сейчас используют в качестве таких биореакторов овец, коз, кроликов и даже мышей. Правда, коровы дают существенно больше молока, но и размножаются они гораздо медленнее и лактировать начинают позже. Есть и другие возможности использования трансгенных клонов и в научных, и в практических целях, но здесь мы это рассматривать не будем.

ТРУДНОСТИ И ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ КЛОНИРОВАНИИ МЛЕКОПИТАЮЩИХ

Несмотря на впечатляющие успехи, пока нельзя утверждать, что клонирование стало обычной лабораторной методикой. Это по-прежнему очень сложная процедура, не слишком часто приводящая к ожидаемому результату. Какие же трудности возникают при клонировании животных?
В первую очередь, это низкая эффективность клонирования. Процедуры, применяемые при клонировании млекопитающих, являются весьма травмирующими для клеток. Далеко не всем клеткам удается их благополучно пережить. Не все начавшие развиваться эмбрионы доживают до рождения. Так, чтобы получить Долли, пришлось для выделения яйцеклеток прооперировать 40 овец (см. рис. 5). Из 430 яйцеклеток удалось получить 277 диплоидных «зигот», из которых только 29 начали развиваться и были имплантированы «суррогатным» матерям. Из них дожил до рождения всего один эмбрион - Долли. Для получения клонированной лошадки Прометеи было «сконструировано» около 840 эмбрионов, из них только 17 развились до того, чтобы их можно было имплантировать «матерям». Четыре из них стали развиваться, но до рождения дожила только одна Прометея.

Другой серьезной проблемой является здоровье родившихся клонов. Как правило, когда сообщается о рождении очередного клона, подчеркивается его отменное здоровье. Действительно, многие клонированные животные, вполне здоровые при рождении, доживали до взрослого состояния и рождали нормальных детенышей. Однако потом у них проявлялись нарушения со стороны разных систем органов. Так, Долли родилась здоровой и родила нескольких здоровых ягнят, но потом начала стремительно стареть и прожила вдвое меньше, чем обычная овца. Трансгенные Полли и Молли, также клонированные в Рослинском институте, прожили еще меньше. Успешно размножились клонированные степные кошки. Правда, о продолжительности их жизни данных пока нет. А вот бычок гаур, также производивший при рождении впечатление здорового, прожил всего два дня из-за кишечного заболевания. Вопрос о здоровье клонов еще нельзя считать окончательно решенным - результаты разных исследователей противоречивы. По некоторым данным очень многие клоны обладают слабым иммунитетом, подвержены простудным и желудочно-кишечным заболеваниям и стареют в 2-3 раза быстрее своих генетических родителей. Исследования японских ученых показали, что у клонированных мышей серьезно нарушено функционирование примерно 4% генов.

Но, пожалуй, самым обескураживающим оказалось то, что клоны могут довольно сильно отличаться от оригинала. Еще В.А. Струнниковым на тутовом шелкопряде было установлено, что, несмотря на одинаковые генотипы, члены одного клона оказываются непохожими по целому ряду признаков. В некоторых клонах это разнообразие оказалось даже большим, чем в обычных, генетически разнородных, популяциях. Несколько лет назад в США родилась очередная клонированная кошечка, которую назвали Сиси (Сс, CopyCat). Генетической мамой ее была трехцветная кошка Рэйн-боу (Радуга). Сиси оказалась непохожей на маму - двухцветной. Но анализ ДНК показал, что она действительно является клоном Радуги. Различия связаны с тем, что ген рыжей окраски находится в Х-хромосоме. У самок одна из Х-хромосом оказывается инактивированной в раннем эмбриогенезе. Инактивируются Х-хромосомы случайно, состояние инактивированности в клетке и клетках-потомках сохраняется на всю жизнь. У гетерозиготной кошки рыжими оказываются те клетки, где инактивирована «нерыжая» Х-хромосома. Клон был получен из одной соматической клетки, в которой одна из Х-хромосом уже была инактивирована. У Сиси инактивированной оказалась «рыжая» Х-хромосома. У млекопитающих в Х-хромосоме находится около 5% всех генов, и клоны могут оказаться непохожими друг на друга по достаточно большому числу признаков. Кстати, такое явление известно и для природных клонов - монозиготных близнецов. Были описаны две сестры - монозиготные близнецы, одна из которых была здорова, а у другой была гемофилия. Известно, что у женщин гемофилия бывает крайне редко, только в случае гомозиготное™. У гетерозигот примерно половина «здоровых» Х-хромосом инактивирована, но оставшейся половины достаточно для нормальной свертываемости крови. Упомянутые близнецы, по-виДимому, возникли в результате разделения эмбриона на стадии, когда Х-хромосомы уже были инакти-вированы и у одной из сестер нормальная хромосома оказалась инактивированной во всех клетках организма. Результатом стало развитие заболевания у гетерозиготы.

Могут быть и другие причины непохожести клонов. Все искусственно полученные клонированные эмбрионы развиваются не в таких условиях, как оригинал. Другими являются возраст суррогатной матери, её гормональный статус, питание и т. п. А эти факторы очень важны во время эмбриогенеза. Причинами различий клона и оригинала могут быть и вариации фенотипического проявления генов (экспрессивность и пенетрантность), различия в геноме митохондрий (клоны имеют не такие митохондрии, как оригинал), отличия в рисунке инактивации (импринтинг) некоторых генов в эмбриогенезе, неустранимые различия ядер соматических и половых клеток (например, неполная дедифференцировка ядра соматической клетки, помещенного в яйцеклетку).

ПРОБЛЕМА КЛОНИРОВАНИЯ ЧЕЛОВЕКА

Именно возможность искусственного клонирования человека вызвала бурные эмоции в обществе. Количество самых полярных высказываний (диапазон их от «к концу следующего столетия население планеты будет состоять из клонов» до «какой-то фантастический роман, интересный, но абсолютно нереалистичный») не поддается исчислению. Некоторые люди уже завещают сохранить их клетки в состоянии глубокого замораживания для того, чтобы, когда техника клонирования будет отработана, воскреснуть в виде клона, обеспечив тем самым себе бессмертие. Другие думают путем клонирования преодолеть бесплодие или вырастить себе «запасные части» - органы для трансплантации. Третьи хотят облагодетельствовать человечество, населив его клонами гениев. Насколько оправданы эти оценки и чаяния? Попробуем спокойно, «без гнева и пристрастья» ответить на некоторые вопросы, возникающие в связи с понятием «клонирование человека».

Вопрос первый: возможно ли клонирование человека? Ответ однозначен: да, конечно, технически это возможно.

Вопрос второй: зачем клонировать человека? Ответов несколько, разной степени реалистичности:

1. Достижение личного бессмертия. Эту перспективу можно серьезно не обсуждать, об абсурдности этих надежд было сказано выше.
2. Выращивание гениальных личностей. Главное сомнение - а будут ли они гениальными? Слишком сложный это признак, и, хотя генетическая составляющая в его формировании не вызывает сомнения, величина этой составляющей может варьировать, а влияние средовых факторов может быть велико и непредсказуемо. И - важный вопрос - будут ли они благодарны тем, кто создал их двойников, нарушив естественное право человека на собственную неповторимость? Ведь и у монозиготных близнецов иногда возникают проблемы, связанные именно с этим аспектом.
3. Научные исследования. Сомнительно, чтобы существовали такие научные проблемы, которые можно было бы разрешить исключительно только с помощью клонов человека (об этических аспектах этого - чуть позже).
4. Использование клонирования в медицинских целях. Это именно тот вопрос, который следует обсуждать серьезно.

Предполагается, что можно использовать клонирование для преодоления бесплодия - это так называемое репродуктивное клонирование. Бесплодие, действительно, является чрезвычайно важной проблемой, многие бездетные семьи согласны на самые дорогие процедуры, чтобы иметь возможность родить ребенка.

Но возникает вопрос - а что принципиально нового может дать клонирование по сравнению, например, с экстракорпоральным оплодотворением с использованием донорских половых клеток? Честный ответ будет - ничего. Клонированный ребенок не будет иметь генотипа, являющего комбинацией генотипов мужа и жены. Генетически такая девочка будет монозиготной сестрой своей матери, генов отца у нее не будет. Точно так же клонированный мальчик для своей матери будет генетически чужд. Другими словами, получить генетически полностью «своего» ребенка с помощью клонирования бездетная семья не сможет, так же как и при использовании донорских половых клеток («дети из пробирки», полученные с помощью собственных половых клеток мужа и жены, генетически не отличаются от «обычных» детей). А в таком случае - зачем такая сложная и, что особенно важно, очень рискованная процедура? А если вспомнить, какова эффективность клонирования, представить себе, сколько нужно получить яйцеклеток, чтобы родился один клон, который к тому же, возможно, будет больным, с укороченной продолжительностью жизни, сколько эмбрионов, уже начавших жить, погибнет, то перспектива репродуктивного клонирования человека становится устрашающей. В большинстве тех стран, где технически возможно осуществление клонирования человека, репродуктивное клонирование законодательно запрещено.

Терапевтическое клонирование предполагает получение эмбриона, выращивание его до 14-дневного возраста, а затем использование эмбриональных стволовых клеток в лечебных целях. Перспективы лечения с помощью стволовых клеток ошеломляющи - излечение многих нейродегене-ративных заболеваний (например болезней Альцгеймера, Паркинсона), восстановление утраченных органов, а при клонировании трансгенных клеток - лечение многих наследственных болезней. Но посмотрим правде в лицо: фактически это означает вырастить себе братика или сестричку, а потом - убить, чтобы использовать их клетки в качестве лекарства. И если убивается не новорожденный младенец, а двухнедельный эмбрион, дела это не меняет. И, хотя, ограниченное использование терапевтического клонирования в большинстве стран не запрещено, очевидно, что человечество вряд ли пойдет по этому пути. Поэтому ученые ищут другие пути для получения стволовых клеток.

Китайские ученые с целью получения эмбриональных стволовых клеток человека создали гибридные эмбрионы путем клонирования ядер клеток кожи человека в яйцеклетках кроликов. Было получено более 100 таких эмбрионов, которые в течение нескольких дней развивались в искусственных условиях, а затем из них были получены стволовые клетки. Неизбежно возникает вопрос, что получилось бы, если такой эмбрион имплантировали бы в матку суррогатной матери и дали ему возможность развиваться. Эксперименты с другими видами животных дают основания считать, что жизнеспособный плод вряд ли бы мог развиться. Ученые надеются, что такой способ получения стволовых клеток окажется этически более приемлемым, чем клонирование человеческих эмбрионов.

Но, к счастью, оказывается, что эмбриональные стволовые клетки можно получать гораздо проще, не прибегая к сомнительным с этической точки зрения манипуляциям. У каждого новорожденного в его собственной пуповинной крови содержится довольно много стволовых клеток. Если эти клетки выделить, а затем хранить в замороженном виде, их можно будет использовать, если возникнет такая необходимость. Создавать такие банки стволовых клеток можно уже сейчас. Правда, следует иметь в виду, что стволовые клетки еще могут преподнести сюрпризы, в том числе и неприятные. В частности, есть данные о том, что стволовые клетки могут легко приобретать свойства злокачественности. Скорее всего, это связано с тем, что в искусственных условиях они изъяты из-под жесткого контроля со стороны организма. А ведь контроль «социального поведения» клеток в организме не только жесткий, но весьма сложный и многоуровневый. Но, конечно, возможности использования стволовых клеток столь впечатляющи, что исследования в этой области и поиски доступного источника стволовых клеток будут продолжаться.

И наконец, последний вопрос: допустимо ли клонирование человека?
Конечно, клонирование человека, безусловно, недопустимо, пока не преодолены технические сложности и низкая эффективность клонирования, пока не гарантирована нормальная жизнеспособность клонов. Несмотря на то, что время от времени появляются сообщения о том, что где-то родились клонированные дети, до настоящего времени ни одного документированного, достоверного случая успешного клонирования человека нет. Сенсационное сообщение о клонировании человеческих эмбрионов с очень высокой эффективностью южнокорейским ученым Ву-Сук Хваном не подтвердилось, были получены доказательства фальсификации результатов. До того чтобы клонирование стало обычной безопасной процедурой, еще очень далеко. Смысл вопроса в другом - допустимо ли клонирование человека в принципе? Какие последствия могло бы иметь применение этого способа размножения?

Одним из вполне реальных последствий клонирования может стать нарушение соотношения полов в потомстве. Не секрет, что очень и очень многие семьи во многих странах хотели бы иметь скорее мальчика, чем девочку. Уже в настоящее время в Китае возможность пренатальной диагностики пола и меры по ограничению рождаемости привели к такому положению, что в некоторых районах среди детей наблюдается значительное преобладание мальчиков. Что будут делать эти мальчики, когда придет время заводить семью?

Другое негативное следствие широкого применения клонирования - снижение генетического разнообразия человека. Оно и так невелико - существенно меньше, чем, например, даже у таких малочисленных видов, как человекообразные обезьяны. Причина этого - резкое снижение численности вида, имевшее место не менее двух раз за последние 200 тыс. лет. Следствием является большое количество наследственных заболеваний и дефектов, вызываемых переходом мутантных аллелей в гомозиготное состояние. Дальнейшее снижение разнообразия может поставить под угрозу существование человека как вида. Правда, справедливости ради следует сказать, что столь широкого распространения клонирования вряд ли следует ожидать даже в отдаленном будущем.

И наконец, не следует забывать о тех последствиях, которые мы пока не в состоянии предусмотреть.

В заключение нужно сказать вот о чем. Стремительное развитие биологии и медицины поставило перед человеком множество новых вопросов, которые никогда раньше не возникали и не могли возникнуть - допустимость клонирования или эвтаназии; возможности реанимации поставили вопрос о границе жизни и смерти; угроза перенаселения Земли требует ограничения рождаемости. С подобными проблемами человечество никогда не сталкивалось и поэтому не выработало никаких этических установок по их поводу. Именно поэтому сейчас невозможно дать ясные и четкие ответы, что можно, а что нельзя. Нужно отдавать себе отчет и вот еще в чем: можно законодательно запретить те или иные работы, но природа человека такова, что, если что-нибудь (клонирование человека, например) технически возможно, оно рано или поздно будет сделано несмотря ни на какие запреты. Именно поэтому необходимо широкое обсуждение подобных вопросов, с тем чтобы вырабатывалось осознанное отношение к таким проблемам, по которым в настоящее время невозможно дать однозначного ответа.


"Биология для школьников" . - 2014 . - № 1 . - С. 18-29.



Клонирование

Коммерческое клонирование

В последние десятилетия прошлого века происходило бурное развитие одной из интереснейших ветвей биологической науки - молекулярной генетики. Уже в начале 1970-х годов возникло новое направление генетики - генная инженерия. На основе ее методолог ии начали разрабатываться различного рода биотехнологии, создаваться генетически измененные организмы. Появилась возможность генной терапии некоторых заболеваний человека. К настоящему времени учеными сделано множество открытий в области клонировании животных из соматических клеток, которые успешно применяются на практике.

Идея клонирования Homo sapiens ставит перед человечеством такие проблемы, с какими оно прежде не сталкивалось. Так развивается наука, что каждый ее новый шаг несет с собой не только новые, неведомые ранее возможности, но и новые опасности.

Что же есть клонирование как таковое? В биологии - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения, - говорит нам энциклопедия "Кругосвет" . Именно так, на протяжении миллионов лет, размножаются в природе многие виды растений и некоторых животных. Однако сейчас термин "клонирование" обычно используется в более узком смысл е и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами. Термин "клон" как таковой происходит от греческого слова "klon", что означает - веточка, побег, черенок, и имеет отношение, прежде всего, к вегетативному размножению. Клонирование растений черенками, почками или клубнями в сельском хозяйстве известно уже тысячи лет. При вегетативном размножении и при клонировании гены не распределяются по потомкам, как в случае полового размножения, а сохраняются в полном составе. Только у животных все происходит иначе. По мере роста клеток животных происходит их специализация, то есть клетки теряют способность реализовывать всю генетическую информацию, заложенную в ядре многих поколений.

Вот такую схему клонирования приводит врач Эдди Лоренс (по материалам Русской службы ВВС).

Что подразумевается под репродуктивным клонированием? Это искусственное воспроизведение в лабораторных условиях генетически точной копии любого живого существа. Под терапевтическим клонированием, в свою очередь, подразумевается все то же репродуктивное клонирование, но с ограниченным до 14 дней сроком роста эмбриона или, как говорят специалисты, "бластоциста". По прошествии двух недель процесс размножения клеток прерывается. Такие клетки будущих органов названы "эмбриональными стволовыми клетками".

Около полувека назад были обнаружены спирали ДНК. Изучение ДНК привело к открытию процесса искусственного клонирования животных.

Возможность клонирования эмбрионов позвоночных впервые была показана в начале 1950-х годов в опытах на амфибиях. Опыты с ними показали, что серийные пересадки ядер и культивирование клеток in vitro в какой-то степени увеличивает эту способность. После получения патента в 1981 году появилось первое клонированное животное - мышь. В начале же 1990-х годов исследования ученых обратились и к крупным млекопитающим. Реконструированные яйцеклетки крупных домашних животных, коров или овец сначала культивируют не in vitro , a in vivo - в перевязанном яйцеводе овцы - промежуточного (первого) реципиента. Затем их оттуда вымывают и трансплантируют в матку окончательного (второго) реципиента - коровы или овцы соответственно, где их развитие происходит до рождения детеныша. Некоторое время назад СМИ потрясли сообщения о появлении Долли - шотландской овечки, представляющей, как утверждают ее создатели, точную копию ее генетической материи. Позже появился американский бычок Джефферсон и второй бычок, выведенный французскими биологами.

Неожиданно группа ученых из Рокфеллеровского и Гавайского университетов столкнулась с проблемой клонирования мышей в шестом поколении. По результатам исследований есть данные, что у подопытных животных возникает некий скрытый дефект, явно приобретенный в процессе клонирования. Выдвигаются две версии этого явления. Одна заключается в том, что окончание хромосомы с каждым поколением должно было бы "стачиваться", становясь короче, что могло привезти к вырождению, то есть к невозможности дальнейшего произведения потомства, так и к преждевременному старению клонов. Вторая версия - ухудшение общего состояния здоровья мышек-клонов с каждым новым клонированием. Но и эта версия не нашла пока подтверждения. Все эти данные настораживают и обращают внимание на то, что и другие млекопитающие (в том числе и человек) могут не избежать той же "участи".

Тем не менее, многие видят в клонировании одни позитивные стороны, и столь же многие этим пользуются. По сообщению Genoterra.ru , биотехнологическая компания Genetic Savings & Clone, имеющая четырехлетний опыт по клонированию кошек, уже работает над заказами шести клиентов, которые хотели бы видеть клонов своих питомцев после их ухода из жизни. Такое удовольствие им будет обходиться в 50000 долларов. На этой неделе компания представила публике четвертую клонированную кошку на Международной выставке кошек в Хьюстоне, США. Эту кошку прозвали Пичес, ядерным донором которой является кошка Манго. Они в целом похожи, но у клона имеется на спине светлое пятно. Такие различия у клонов неизбежны, поскольку в энуклеированной яйцеклетке реципиента остается митохондриальная ДНК, которая отличается от донорской. Немалую роль играют также различные средовые факторы, при которых происходило развитие животных. В 2005 году компания планирует приступить к клонированию собак.

Кроме этого недавно Genetic Savings & Clone лицензировала новый, улучшенный вариант процесса клонирования и продемонстрировала его результат - двух котят-клонов по имени Табули и Баба-Гануш. Новый процесс, названный "передача хроматина" (chromatin transfer) гораздо бережнее и полнее передаёт генетический материал от клетки донора к яйцеклетке, которая должна вырасти в клон. Ключ - в раскрытии ядерной мембраны и удалении лишних для данного процесса белков клетки кожи (которая обычно и используется при клонировании). Этот вид клонирования приводит более чем к 8-процентной норме успеха, говориться в статье на Genoterra.ru . "Очищенный" хроматин, похоже, производит клонированные эмбрионы более сходные с оригинальным организмом, что и показали котята, похожие на прототип не только внешне, но, кажется, и по характеру.

Но возвращение любимого животного в дом - иллюзия, потому, что определение "точно такой же" относится лишь к генетическому набору, в остальном это всё же будет другое существо.

В 2002 году была сформирована практически полная генетическая карта человека. Тогда же компания Clonaid (входит в состав религиозной секты Raelian Movement) объявила о том, что впервые в мире клонировала человека. За это время, по утверждению компании, на свет появилось три клонированных ребенка, однако серьезных доказательств этому не было представлено. Clonaid предлагает всем желающим заплатить $200 тыс. за право произвести собственную копию.

Какова же практическая польза клонирования?

Разработка биотехнологии получения в большом количестве стволовых клеток при терапевтическом клонировании даст возможность медикам корректировать и лечить многие до сих пор неизлечимые заболевания, такие, как диабет (инсулинозависимый), болезнь Паркинсона, болезнь Альцгеймера (старческое слабоумие), болезни сердечной мышцы (инфаркты миокарда), болезни почек, печени, заболевания костей, крови и другие.

Новая медицина будет базироваться на двух основных процессах: на выращивании здоровой ткани из стволовых клеток и пересадке такой ткани на место поврежденной или больной. В основе же метода создания здоровых тканей лежат два сложных биологических процесса - первоначальное клонирование человеческих эмбрионов до стадии появления "стволовых" клеток и последующее культивирование полученных клеток, и выращивание в питательных средах необходимых тканей и, может быть, органов.

Человек с давних времен мечтал выращивать только качественные и вкусные овощи и фрукты, разводить коров с хорошими удоями, овец с большим настригом шерсти или же отличных кур-несушек, иметь домашних животных - точных копий уже отживших свой век любимцев, были всегда. Однако только в последнее время этот здоровый интерес был подогрет успехами ученых в клонировании животных и растений. Но реально ли осуществить эту мечту человечества именно методами клонирования?

Появление на полях трансгенных сортов растений, устойчивых к насекомым, гербицидам и вирусам, знаменует новую эру в сельскохозяйственном производстве. Созданные генными инженерами растения смогут не только прокормить увеличивающееся население планеты, но и станут основным источником дешевых лекарств и материалов.

Биотехнология растений заметно отставала вплоть до последнего времени, но сейчас на рынке наблюдается устойчивый рост доли трансгенных растений с новыми полезными признаками. Вот такие данные приводятся в статье "Биотехнология растений" : "Клонированные растения в США уже в 1996 году занимали площадь в 1,2 млн. га, которая в 1998 году увеличилась до 24,2 млн. га." Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, есть все основания ожидать, что площадь под клонированными растениями в будущем увеличится в несколько раз.

История генной инженерии растений начинается с 1982 года, когда впервые были получены генетически трансформированные растения. Метод трансформации основывался на природной способности бактерии Agrobacterium tumefaciens генетически модифицировать растения. Так, с помощью культивирования растительных клеток и тканей, гарантирующих безвирусность растения, были выведены всюду продаваемые гвоздики, хризантемы, герберы и другие декоративные растения. Также можно купить и цветки экзотических орхидных растений, производство клонов которых уже имеет промышленную основу. Некоторые сорта клубники, малины, цитрусовых выведены с использованием техники клонирования. Прежде для выведения нового сорта требовалось 10-30 лет, теперь же, благодаря применению методов культивирования тканей этот период сокращен до нескольких месяцев. Весьма перспективными признаются работы, связанные с производством на основе культивирования тканей растений лекарственных и технических веществ, которые невозможно получить путем синтеза. Так, уже получают подобным способом из клеточных структур барбариса изохинолиновый алкалоид берберин, а из женьшеня - гинсеносид.

Известно, что любой прогресс биотехнологии растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами.

Что же касается животных, то уже с начала XIX столетия ученые пытались решить вопрос о том, является ли сужение функций ядра дифференцированной клетки процессом необратимым. В дальнейшем была разработана методика клонирования ядер. Наибольшего успеха в клонировании эмбрионов амфибий добился английский биолог Джон Гердон. Он использовал метод серийных пересадок ядер и подтвердил гипотез у о постепенной утрате потенций по мере развития. Сходные результаты получили и другие исследователи.

Несмотря на эти успехи, отмечает в своей статье "Русский медицинский сервер", проблема клонирования амфибий остается нерешенной и по сей день. Теперь уже можно судить о том, что эта модель была выбрана учеными для подобных исследований не очень удачно, поскольку клонирование млекопитающих оказалось делом более простым. Не стоит забывать, что развитие микроскопической техники и технологии микроманипуляций в то время еще не позволяло манипулировать с эмбрионами млекопитающих и проводить трансплантацию ядер. Объем яйцеклетки амфибий примерно в 1000 раз больше объема ооцита плацентарных, поэтому амфибии и были так привлекательны для изучения ранних процессов развития.

В настоящее время проведены фундаментальные исследования проблемы клонирования мышей. Полноценное эмбриональное развитие и рождение здоровых и плодовитых клональных мышей было достигнуто только при трансплантации ядер кумулюсных клеток, клеток Сертоли, фибробластов из кончика хвоста, эмбриональных стволовых клеток и фетальных клеток гонад. В этих случаях количество новорожденных мышат не превышало 3% от общего числа реконструированных ооцитов.

Клонирование же домашних животных оказалось более трудным делом, чем предполагалось. В 2001 году компания Genetic Savings and Clone объявила о рождении первой в мире клонированной кошки. Эта компания, штаб-квартира которой находится в фешенебельном пригороде Сан-Франциско, Саосалито, специализируется на "увековечивании" домашних любимцев - кошек и собак. Не смотря на то, что первая в мире кошка-клон и была "сделана под копирку", она не похожа по окрасу ни на родную мать (донор ДНК), ни на приемную (которая вынашивала зародыш). Ученые объясняют это тем, что расцветка меха лишь частично зависит от генетической информации, влияют еще и факторы развития.

Тем не менее, вдохновленная первым успехом компания начала коммерческое клонирование первой партии кошек-клонов по коммерческому заказу. Стоимость услуги - 50 тысяч долларов.

"Год назад мы сказали, что начнем коммерческое обслуживание через год, и вот год прошел, - говорит Бен Карлсон (Ben Carlson), представитель компании Genetic Savings & Clone, - и пока невозможно делать прогнозы относительного того, сколько времени потребуется для того, чтобы доработать технологию для получения хороших результатов".

Собак клонировать пока не удалось вообще. У них, как говорят ученые, очень сложный репродуктивный цикл, и их яйцеклетки трудно добывать и выращивать.

Сегодня главный бизнес GSC заключается не в клонировании (оно все-таки еще не поставлено на поток), а в хранении образцов ДНК животных. Такая биопсия в США стоит от $100 до $500 в зависимости от параметров домашнего любимца.

Эксперты, тем не менее, предупреждают, что хозяева, доверившие компании клонирование своих питомцев, могут быть разочарованы. Как правило, любовь к конкретной кошке или собаке определяется ее повадками и характером, что имеет мало общего с генами. Они отмечают, что внешние факторы на развитие животного оказывают не меньший эффект, чем наследственность.

Клонирование овцы Долли в 1996 году Яном Вильмутом и его коллегами в Рослинском институте в Эдинбурге вызвало бурную реакцию во всем мире. Долли была зачата из клетки молочной железы овцы, которой уже давно не было в живых, а ее клетки хранились в жидком азоте. Методика, с помощью которой была создана Долли, известна под названием "перенос ядра", то есть из неоплодотворенной яйцеклетки было удалено ядро, а вместо него помещено ядро из соматической клетки. Из 277 яйцеклеток с пересаженным ядром лишь одна развивалась в относительно здоровое животное. Этот метод размножения является "асексуальным", так как он не требует наличия представителя каждого пола, чтобы создать ребенка. Успех Вилмута стал международной сенсацией.

В декабре 1998 года стало известно об удачных закончившихся попытках клонирования крупного рогатого скота, когда японцам И. Като, Т. Тани и сотр. удалось получить 8 здоровых телят после переноса 10 реконструированных эмбрионов в матку коров-реципиентов.

Очевидно, что требования животноводов к копиям своих животных куда как скромнее, нежели у желающих клонировать своих домашних любимцев. Давал бы клон столько же молока, что и "мать-клониха", а какой он расцветки и характера - какая разница? Исходя из этого, новозеландские биологи сделали недавно новый важный шаг в клонировании коров. В отличие от американских коллег из Калифорнии, они ограничились воспроизведением лишь одной особенности клонируемого животного. В их случае - способности коровы давать молоко с повышенным содержанием белков. Как это обычно во всех экспериментах по клонированию, процент выживших эмбрионов был очень низок. Из 126 трансгенных клонов выжили лишь 11, причем лишь девять из них обладали требуемой способностью. Так что перспективы развития данной области клонирования, как говорится, "налицо".

В конце 2000 - начале 2001 г. весь научный мир следил за попыткой исследователей из американской фирмы "АСТ" клонировать вымирающий вид буйволов Bos gaurus (гяур), который когда-то был широко распространен на территории Индии и Юго-Западной Азии. Соматические клетки-доноры ядер (кожные фибробласты) были получены в результате биопсии post mortem от быка в возрасте 5 лет и после двух пассажей в культур е длительное время (8 лет) хранились в криоконсервированном состоянии в жидком азоте. Всего было получено четыре беременности. Чтобы подтвердить генетическое происхождение плодов, два из них были выборочно изъяты. Цитогенетический анализ подтвердил наличие в клетках характерного для гяуров нормального кариотипа, однако выяснилось, что вся митохондриальная ДНК происходит от яйцеклеток коров-доноров другого вида (Bos taurus).

К сожалению, в опыте американских ученых одна из беременностей прервалась на 200-дневном сроке, а в результате другой родился теленок, который умер спустя 48 ч. Представителями фирмы было заявлено, что это произошло "по причине инфекционного клостридиозного энтерита, не имеющего отношения к клонированию".

Реализация всего потенциал а, заложенного в новой технологии клонирования, для спасения исчезающих видов животных может быть возможна только при разумном подходе к решению возникающих проблем. Стоит отметить, что в результате клонирования очень часто обнаруживается различная патология плодов: гипертрофированная плацента, гидроалантоис, плацентомы, увеличенные в размере кровеносные сосуды пупочного канатика, отечность плодных оболочек. Клоны, погибшие в течение нескольких дней после рождения, характеризуются наличием патологии сердца, легких, почек, мозга. У новорожденных также часто встречается так называемый "синдром крупного молодняка".

Клонированные животные долго не живут и отличаются пониженной способностью бороться с болезнями. Это показали эксперименты, результаты которых обнародовали исследователи из токийского Национального института инфекционных заболеваний, сообщает Newsru.com Для опытов они отобрали 12 клонированных мышей и столько же рожденных естественным путем. Клоны начали умирать уже после 311 дней жизни. Десять из них скончались, не протянув и 800 дней. За это же время умерла только одна "нормальная" мышь. Большая часть клонов скончалась от острого воспаления легких и болезней печени. Судя по всему, их иммунная система не могла бороться с инфекциями и производить достаточное количество нужных антител, считают японские исследователи.

Причины слабости клонов, полагают они, нуждаются в тщательном изучении и могут быть связаны с нарушениями на генетическом уровне и недостатками нынешней технологии репродуцирования.

Тем не менее, ученые не останавливаются в своих изысканиях. Многим видятся широкие перспективы клонирования. Например, ученые британской компании "PPL Therapeutics", успешно клонировавшие пять поросят в штате Вирджиния, органы и ткани которых могут использоваться для пересадки больным людям, полагают, что клинические испытания таких операций могут начаться в ближайшие четыре года, сообщают.

Но, как отмечают многие эксперты, до широкомасштабных операций по пересадке органов от свиньи к человеку обществу и научному миру необходимо еще решить целый ряд трудных этических вопросов, таких, как "корректность" трансплантации органов животного в организм человека или замена органов одного вида живых существ на органы другого вида.

С другой стороны, многие ученые считают, что уже очень скоро клонирование сельскохозяйственных животных начнет приносить первые плоды. Молоко клонов коров, мясо потомства клонированных коров и свиней может появиться в продаже уже в следующем году. Фактически и сейчас в США, где компании, занимающиеся разведением скота, создали уже около сотни клонов лучших представителей элитных пород, официального запрета такой деятельности нет.

Однако есть неформальная просьба Управления по пищевым продуктам и лекарствам (FDA) не спешить с продажей таких продуктов. Национальная академия наук США подкрепила уверенность, что подобные продукты безопасны для здоровья. Как сообщают Медновости , в выводах комиссии, занимавшейся вопросами клонирования коров и свиней, содержится рекомендация по проведению некоторых дополнительных исследований, но в целом продажу продуктов из клонированных животных и их потомства ученые сочли безопасной. Конечно, речь не идет о том, чтобы забивать на мясо клонированных животных. Сейчас это очень дорогой процесс, как правило, обходящийся более чем в 20000 долларов. Однако животные из первого-второго поколения потомства клонов вполне могут пойти на мясо. Тем не менее, у экспертов FDA есть опасение, что при клонировании животных у владельцев может возникнуть соблазн подкорректировать их гены, чтобы улучшить характеристики. Этого ученые опасаются значительно больше, нежели самого клонирования, при котором гены животного остаются неизменными.

А вот в Японии с 1999 года было разрешено пополнять поголовье молочных и мясных пород с применением техники "тиражирования" оплодотворенных яйцеклеток. Однако при этом коммерческое клонирование в классическом понимании запрещено, то есть "с использованием соматической (неполовой) клетки". Но, велика вероятность того, что Япония все-таки станет первой в мире страной, где на прилавках магазинов появится мясо клонированных животных.

Так или иначе, возможности клонирования открывают новые перспективы для садоводов-огородников, фермеров-животноводов, а также медицины, хотя в настоящее время его применение ограничивается нерешенными технологическими и биологическими проблемами. Кроме того, нам не хватает знания структуры геном ов сельскохозяйственных животных, что необходимо для их направленного изменения. Сначала продукция от клонированных животных должна пройти апробацию в соответствующем компетентном государственном органе, отвечающем за применение пищевых и лекарственных ресурсов, которое запрещает продажу молока или мяса генетически модифицированных и клонированных животных, пока не выработает все необходимые правила. Предстоит также еще провести эксперименты по проверке безопасности получаемого молока для людей. Однако, не смотря ни на что, возможно, все-таки рано или поздно, по полям и лугам загуляют стада клонированных и генетически модифицированных коров, а любимые лающие и мурлыкающие питомцы будут десятки лет услаждать взор своих хозяев и преданно заглядывать им в глаза.

Клонирование - это, методы получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. В наши дни термин “клонирование” как правило используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Экземпляры которые появились в результате бесполого размножения по определению генетически одинаковые, но и у них можно наблюдать наследственную изменчивость, которая обусловлена случайными мутациями или создаваемую искусственно в лаборатории.

Что такое клон?

По научному клон (от греческого klon - ветвь, отросток) - «это ряд следующих друг за другом поколений наследственно однородных потомков одной исходной особи (растение, животное, микроорганизм), которые образуются в результате бесполого размножения». Классическим примером такой вегетации может послужить размножение амебы, клетка которой делится, а каждая из 2-х образовавшихся делится снова, образуя 4, и т. д. В основе методики клонирования лежит модель размножения, при которой внутри клетки происходит деление генетического материала.

Клон - не ксерокопия или двойник человека

Большинство людей толком и не представляют, как происходит сам процесс клонирования. Мало того, многие думают, что клон животного или человека это как ксерокопия: раз - и из лаборатории вышел ваш (или чей-то) готовый двойник.

Раз способом клонирования возможно копирование живых организмов, вегетативным (неполовым) путем выращивать клоны-копии живых существ, в том числе и млекопитающих, к классу которых относятся и люди, то клон человека, таким образом, - это просто идентичный близнец другого человека, отсроченный по времени. Скажем, для того чтобы получить клона человека в возрасте, к примеру, 40 лет, надо, чтобы прошли эти 40 лет.

Но научно-фантастические романы и фильмы создали у людей впечатление, словно человеческие клоны окажутся мрачными , монстрами. Это, конечно, не так.

Клоны людей будут обычными человеческими существами. Их станет вынашивать обычная женщина на протяжении 9-ти месяцев, они родятся и будут воспитываться в семье, как и любой другой ребенок. Клон-близнец будет на несколько десятилетий моложе своего оригинала, потому нет опасений, что люди могут их перепутать. Клон не сможет унаследовать ничего из воспоминаний оригинального индивида. То есть, клон - это не ксерокопия или двойник человека, а младший идентичный близнец. Ничего опасного в этом обстоятельстве нет.

Что ожидать от клонирования

Как было сказано выше, многие думают, что клонирование может привести к созданию людей-монстров или уродов. Но клонирование - это не генная инженерия, которая в действительности способна создавать монстров. Во время клонирования ДНК копируется, как результат появляется человек - точный близнец существующего индивида и, следовательно, не урод.

Что важно - у каждого клона, как бы там ни было, будет хотя бы один родитель - мать, выносившая и родившая его, и, как следствие, родившийся ребенок с юридической точки зрения ни чем не будет отличаться от других детей.

Теперь становится понятным, что ни сейчас, ни в скором будущем нашу планету не наводнят толпы клонов-гениев, нигде не появятся армии солдат-клонов, никто не сможет создать клонов-рабов, гаремы из клонов-наложниц и т. п.

Зачем нужно клонировать человека?

Тут имеются как минимум две веские причины: чтобы дать возможность семьям зачать детей - близнецов выдающихся личностей, и чтобы бездетные семьи могли иметь детей.

Ответ на первый взгляд простой, однако у самой проблемы имеется множество подводных камней. Казалось бы - почему не разрешить клонировать знаменитых ученых, представителей творческой интеллигенции, спорта? Стоило бы клонировать всех Нобелевских лауреатов ради того будущего вклада, который их близнецы смогли бы привнести в науку.

Но клон, к примеру, Альберта Энштейна, по факту, будет в любом случае являться родственником всех потомков великого ученого. И вот большой вопрос, как они могут отнестись к тому, что на свете появился их родственник, внешне как две капли воды похожий на их гениального предка, но при этом из-за разного воспитания, образования и прочего вдруг после 18-ти лет захочет стать не физиком, а скажем… сапожником! А ведь весь мир будет ждать от дубля Энштейна гениальных открытий.

Также и с другими выдающимися деятелями. Практически нельзя рассчитать, какое событие в жизни, к примеру, Махатмы Ганди или Жюля Верна подтолкнуло первого возглавить борьбу индийцев за независимость, а второго - стать известным писателем-провидцем.

Или еще похлеще - сбросятся, скажем, все поклонники , соберут деньги и заплатят за клонирование своего кумира, а новая секс-дива посмотрит вокруг и скажет: «Боже, в каком мрачном мире я родилась! Ухожу в монастырь». И все…

Следует заметить, по данным исследований службы Гэллапа, 9 из 10-ти американцев считают, что клонирование человека, если это в ближайшее время станет возможным, должно быть запрещено, а 2/3 американцев выступают против клонирования животных.

Мы живем в обществе, в котором мнение большинства может оказаться решающим, да еще ко всему это мнение можно легко сформировать при помощи современных PR-технологий. И тогда ребенок - клон выдающейся личности с самого детства станет заложником репутации своего давно умершего близнеца, а это уже прямое нарушение прав человека на целый ряд свобод.

Таким образом, единственно реальный и обусловленный довод в пользу клонирования - это желание родителей, потерявших своего ребенка, воссоздать, или, точней, возродить свое чадо.

И такого рода прецедент уже имеется - некая американская компания «Клонэйд» уже сейчас намеревается приступить к выполнению заказа одной семейной пары клонировать их умершую в 10-ти месячном возрасте дочь. Оплата предстоящей операции в сумме 560 тыс. долларов произведена, работы вроде бы уже ведутся. Со слов руководителя проекта, у компании имеется множество других заявок.

Клонирование и мнение церкви

Если с людскими законами вроде бы все в порядке, то вот закон Божий решительно против клонирования.

За запрет клонирования людей выступают представители практически всех мировых религий. Исследования ученых по клонированию живых существ и человека подрывают в сознании верующих идею Божественного творения всего сущего на Земле, оскорбляют личность и институт брака.

О непримиримой позиции Католической Церкви, которая насчитывает в мире больше миллиарда последователей, в отношении клонирования человеческих органов и самого человека, заявлял и Папа Римский Иоанн Павел II в своем выступлении еще в августе 2000 г. на Международном конгрессе специалистов по трансплантации в Риме.

Так что ученые, которые замахнулись на божественное, сильно рискуют. Как минимум - быть отлученными от церкви, а как максимум… Религиозных фанатиков много, и погромы в лабораториях - это еще не самое страшное, на что они способны.

«За» и «против»

Опытным путем удалось установить, что даже копирование ДНК не дает возможности получить идентичное живое существо. Так, к примеру, у клонированной кошки был другой окрас, чем у ее матери – донора генетического материала. Многие считали, что эта технология даст возможность «воскрешать» домашних любимцев, наиболее смелые надеялись даже воспроизводить умерших людей.

Рассматривать клонирование, как отрасль репродуктивной медицины, в наши дни никто не берется. А вот развивать ее потенциал в терапевтической области возможно. Если следовать исключительно таким путем, то количество противников клонирования резко уменьшается. Для этого можно рассмотреть все нюансы, затрагивающие процесс под названием клонирование.

«За» и «против» вкратце можно изложить так. К главным преимуществам относятся открывающуюся возможность лечения многих серьезных заболеваний, восстановления пострадавшей от ожогов кожи, замены органов. Однако противники настаивают на том, что надо не забывать о моральной и этической стороне вопроса, о том, что такие технологии призваны убивать зародившуюся жизнь (эмбрионы, из которых берутся стволовые клетки).

1997 год, 23 февраля в Великобритании, в лаборатории, под руководством ученого-генетика Яна Вильмута, после 277 неудачных опытов появилось «первое в мире искусственное млекопитающее» - овца Долли. Ее фотографии обошли почти все мировые газеты. Но, оказывается, еще в 1987 г. в одной российской лаборатории была искусственно создана мышь, получившая имя Маша.